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Outline of First Lecture

Explicitly Structured Dynamical Systems

Reminder: Projective reduction for linear dynamical systems
presented in standard first order form.

Examples of Explicitly Structured Dynamical Systems

. partitioning state variables (don’t mix apples and oranges)

. second-order structure (vibrating systems)

. propagation delays and system memory (viscoelastic models)

. parametrized systems (inverse problems and optimization)

Unifying framework: General coprime realizations

. Interpolatory projections that retain structure

. Backward stability for interpolatory methods with inexact solves
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Classic problem setting
Standard “state space” description:

E, A ∈ Rn×n, B ∈ Rn×p and C ∈ Rm×n

with n (state space dimension) very large: n� m, p.
“Internal state” x(t) is assumed to be unimportant.
Usual goal: Reduce the state space dimension without degrading
the input-output map “u 7→ y”

Find a “smaller” dynamical system
with nearly the same input/output map.
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Model Reduction Heuristics

Eliminate low value subspaces
Original x(t) may linger close to low dimensional subspaces that are
relatively insensitive to variations in input u(t).

Project dynamics onto “attractive” r-dimensional subspaces.

Original x(t) may have components of motion that have little influence on
y(t) - low-visibility components.

Project dynamics along “low-visibility” codimension-r subspaces.

We may eliminate attractive components with low visibility and
high visibility components that are not attractive but do not eliminate
attractive components with high visibility.

Balancing addresses this tradeoff rigorously.
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Model Reduction Heuristics

Eliminate low value subspaces
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relatively insensitive to variations in input u(t).
Project dynamics onto “attractive” r-dimensional subspaces.

Original x(t) may have components of motion that have little influence on
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Projection Framework

SupposeWr = Ran(Wr) and Vr = Ran(Vr) are r-dimensional subspaces
such that Vr ∩W⊥r = {0}. Choose bases so that WT

r Vr = I.
The (skew) projection Pr = VrWT

r projects onto Vr alongW⊥r .

Vr should represent an “attractive” r-dimensional subspace
W⊥r should represent a “low-visibility” codimension-r subspace.

“Project dynamics” by approximating x(t) ≈ Vrxr(t)
and constraining the reduced trajectory xr(t) to satisfy

WT
r (EVr ẋr(t)− AVrxr(t)− B u(t)) = 0 (Petrov-Galerkin)

Leads to a reduced model: Er = WT
r EVr ∈ Rr×r,

Ar = WT
r AVr ∈ Rr×r, Cr = CVr ∈ Rm×r, Br = WT

r B ∈ Rr×p.

Er ẋr = Arxr + Br u(t)
yr(t) = Crxr(t)

Beattie Preserving System Structure
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Rational Approximation

Want outputs to be close, yr ≈ y, over a large class of inputs u.

Fourier Transforms: u(t) 7→ û(ω), y(t) 7→ ŷ(ω)

Original response: ŷ(ω) = H(ı̇ıω)û(ω)

Reduced response: ŷr(ω) = Hr(ı̇ıω)û(ω)

with transfer functions:

H(s) = C(sE− A)−1B and Hr(s) = Cr(sEr − Ar)
−1Br

ŷ(ω)− ŷr(ω) =

(
H(ı̇ıω)−Hr(ı̇ıω)

)
û(ω)

Want Hr(ı̇ıω) ≈H(ı̇ıω) for ω ∈ R.

Beattie Preserving System Structure
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Interpolation Framework

H(s) ≈ Hr(s) ?

Performance measures:
‖H−Hr‖H2 =

(∫ ∞
−∞
|H(ı̇ıω)−Hr(ı̇ıω)|2dω

)1/2

“H2 error”

(try to make ‖y− yr‖L∞/‖u‖L2 small)

‖H−Hr‖H∞ = sup
ω
|H(ı̇ıω)−Hr(ı̇ıω)| “H∞ error”

(try to make ‖y− yr‖L2/‖u‖L2 small)

Interpolation is a necessary condition for
a best rational approximation, Hr ≈H in each case.

Find reduced models, Hr(s), that interpolate H(s)
at selected points σ1, σ2, ... ⊂ C.
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Interpolatory projections

The key fact that ties interpolation together with projection methods
for standard first-order state-space realizations:

Theorem
Suppose b ∈ Rp and c ∈ Rm are arbitrary vectors.

a. If (σE− A)−1Bb ∈ Ran(Vr) then H(σ)b = Hr(σ)b

b. If (µET − AT)−1CT
c ∈ Ran(Wr) then cTH(µ) = c

THr(µ).

c. If both (a) and (b) hold with σ = µ then cTH′(σ)b = c
TH′r(σ)b.

Thus, given r distinct interpolation points: {σi}r
i=1 and directions {bi}r

i=1, {ci}r
i=1, if

Vr =
[
(σ1E− A)−1Bb1, · · · , (σrE− A)−1Bbr

]
, WT

r =


c

T
1 C(σ1 E− A)−1

...
c

T
r C(σr E− A)−1

 ,
then H(σi)bi = Hr(σi)bi, cT

i H(σi) = c
T
i Hr(σi), and cT

i H
′(σi)bi = c

T
i H
′
r(σi)bi for i = 1, ..., r
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Structure-preserving model reduction

“Every linear ODE is equivalent to a first-order ODE system”
Might not be the best approach ...
The “state space” is an aggregate of dynamic variables some of
which may be internal and “locked” to other variables.
Refined goal: Want to develop model reduction methods that can
reduce selected state variables (i.e., on selected subspaces) while
leaving other state variables untouched; maintaining the previous
structural relationships among the variables.

Note order reduction is distinguished from dimension reduction
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Example 1: Incompressible viscoelastic vibration

∂ttw(x, t)− η∆w(x, t)−
∫ t

0
ρ(t − τ) ∆w(x, τ) dτ +∇$(x, t) = b(x) ·u(t),

∇ · w(x, t) = 0 which determines y(t) = [$(x1, t), . . . , $(xp, t)]T

w(x, t) is the displacement field; $(x, t) is the pressure field;
ρ(τ) is a “relaxation function”

M ẍ(t) + ηK x(t) +

∫ t

0
ρ(t − τ) K x(τ) dτ + D$(t) = B u(t),

DT x(t) = 0, which determines y(t) = C$(t)

x ∈ Rn1 discretization of w; $ ∈ Rn2 discretization of $.
M and K are real, symmetric, positive-definite matrices,

B ∈ Rn1×m, C ∈ Rp×n2 , and D ∈ Rn1×n2 .
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Example 1: Incompressible viscoelastic vibration

Transfer function (need not be a rational function !):

H(s) = [ 0 C ]

[
s2M + (ρ̂(s) + η) K D

DT 0

]−1 [ B
0

]

Want a reduced order model that replicates input-output response
with high fideliety yet retains “viscoelasticity”:

Mr ẍr(t) + ηKr xr(t) +

∫ t

0
ρ(t − τ) Kr xr(τ) dτ + Dr$r(t) = Br u(t),

DT
r xr(t) = 0, which determines yr(t) = Cr$r(t)

with symmetric positive semidefinite Mr, Kr ∈ Rr×r,
with Br ∈ Rr×m, Cr ∈ Rp×r, and Dr ∈ Rr×r.
Because of the memory term, both reduced and original systems
have infinite-order.
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Example 2: Delay Differential System

Many complex processes exhibit some sort of delayed response
in their input, output, or internal dynamics.

Often related to ancillary unmodeled dynamics that create a time lag due to communication,
material transport, or inertial effects occuring at a finer scale than captured in the model.

Eẋ(t) = A1x(t) + A2x(t − τ) + F u(t),

y(t) = Dx(t)

Delay systems are also infinite-order. The dynamic effects of even
a small delay can be profound.

Find a reduced order model retaining the same delay structure:

Erẋr(t) = A1rxr(t) + A2rxr(t − τ) + Fr u(t),

yr(t) = Drxr(t)

H(s) = D
(
sE− A1 − A2 e−sτ)−1 F → Hr(s) = Dr

(
sEr − A1r − A2r e−sτ)−1 Fr

Beattie Preserving System Structure
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Projective reduction for coprime realizations

Suppose a transfer function H(s) has a known decomposition:

H(s) = C(s)K(s)−1B(s)

(“general coprime realization”) where the factors

C(s) ∈ Cp×n and B(s) ∈ Cn×m are analytic for s in the right half plane, and

K(s) ∈ Cn×n is both analytic and full rank for s in the right half plane.

This realization should reflect the system “structure” that is valued.

Reduced models can be constructed via projection as before:

Pick full rank constant matrices Vr ∈ Cn×r and Wr ∈ Cn×r

Reduced model Hr(s) = Cr(s)Kr(s)−1Br(s) is obtained by defining

Kr(s) = WT
r K(s)Vr, Br(s) = WT

r B(s), and Cr(s) = C(s)Vr.

Vr and Wr can often be chosen so that structure is preserved.
Beattie Preserving System Structure
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Example 1 again

Framework: H(s) = C(s)K(s)−1B(s) and Hr(s) = Cr(s)Kr(s)−1Br(s)

Kr(s) = WT
r K(s)Vr, Br(s) = WT

r B(s), and Cr(s) = C(s)Vr.

H(s) = [ 0 C ]

[
s2M + (ρ̂(s) + η) K D

DT 0

]−1 [ B
0

]
K(s) =

[
s2M + (ρ̂(s) + η) K D

DT 0

]
;

B(s) =

[
B
0

]
; C(s) = [ 0 C ].

To maintain symmetry and positive definiteness, Wr = Vr =

[
Ur 0
0 Zr

]
:

Kr(s) = VT
r K(s)Vr =

[
s2Mr + (ρ̂(s) + η) Kr Dr

DT
r 0

]
with Mr = UT

r MUr; Kr = VT
r KVr and Dr = UT

r DZr .
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Interpolatory projections for structured systems

Theorem

Suppose that B(s), C(s), and K(s) are analytic at a point σ ∈ C
and both K(σ) and Kr(σ) = WT

r K(σ)Vr have full rank.
Suppose b ∈ Cp and c ∈ Cm are arbitrary nontrivial vectors.

If K(σ)−1B(σ)b ∈ Ran(Vr) then H(σ)b = Hr(σ)b.

If
(
c

TC(σ)K(σ)−1)T ∈ Ran(Wr) then c
TH(σ) = c

THr(σ)

If K(σ)−1B(σ)b ∈ Ran(Vr) and
(
c

TC(σ)K(σ)−1)T ∈ Ran(Wr)

then c
TH′(σ)b = c

TH′r(σ)b

Can build up projecting subspaces based
on interpolation data as in the standard case.

Optimal interpolation points are difficult to characterise;
(but good ones are often not hard to obtain)

Beattie Preserving System Structure
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Proof Outline
For ε small, K(σ + ε)−1B(σ + ε)b = K(σ)−1B(σ)b+O(ε)

and c
TC(σ + ε)K(σ + ε)−1 = c

TC(σ)K(σ)−1 +O(ε).
Define

ΠV = VrKr(σ + ε)−1WT
r K(σ + ε) and

ΠW = K(σ + ε)VrKr(σ + ε)−1WT
r

First key point:

ΠV is a skew projection onto Ran(Vr) independent of ε, and

ΠW is a skew projection with Ker(ΠW) = Ran(Wr)
⊥

independent of ε.

Examine the pointwise error: e.g., to show c
TH′(σ)b = c

TH′r(σ)b

c
TH(σ + ε)b− cTHr(σ + ε)b = c

TC(σ + ε)(K(σ + ε)−1 −Kr(σ + ε)−1)B(σ + ε)b

= c
TC(σ + ε)K(σ + ε)−1

(
I−ΠW

)
K(σ + ε)

(
I−ΠV

)
K(σ + ε)−1B(σ + ε)b

= O(ε2)
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Interpolatory projections in model reduction

Given distinct (complex) frequencies {σ1, σ2, . . . , σr} ⊂ C,
left tangent directions {c1, . . . , cr}, and
right tangent directions {b1, . . . , br}:

Vr =
[
K(σ1)−1B(σ1)b1, · · · , K(σr)

−1B(σr)br
]

WT
r =

 c
T
1C(σ1)K(σ1)−1

...
c

T
r C(σr)K(σr)

−1


Guarantees that H(σj)bj = Hr(σj)bj,

c
T
j H(σj) = c

T
j Hr(σj), c

T
j H
′(σj)bj = c

T
j H
′
r(σj)bj

for j = 1, 2, . . . , r.

Beattie Preserving System Structure
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Example 1 (last time)

A simple variation of the previous model:
Ω = [0, 1]× [0, 1]: a volume filled with a viscoelastic material with
boundary separated into a top edge (“lid”), ∂Ω1, and the
complement, ∂Ω0 (bottom, left, and right edges).
Excitation through shearing forces caused by transverse
displacement of the lid, u(t).
Output: displacement w(x̂, t), at a fixed point x̂ = (0.5, 0.5).

∂ttw(x, t)− η0 ∆w(x, t) − η1∂t

∫ t

0

∆w(x, τ)

(t − τ)α
dτ + ∇$(x, t) = 0 for x ∈ Ω

∇ · w(x, t) = 0 for x ∈ Ω,

w(x, t) = 0 for x ∈ ∂Ω0, w(x, t) = u(t) for x ∈ ∂Ω1

Beattie Preserving System Structure
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Hfine: nx = 51, 842 and np = 6, 651 H30: nx = np = 30
Hcoarse: nx = 13, 122 np = 1, 681 H20: nx = np = 20

H30,H20 : reduced interpolatory viscoelastic models.

H30 almost exactly replicates Hfine and outperforms Hcoarse

Since input is a boundary displacement (as opposed to a boundary
force), B(s) = s2 m + ρ(s)k,
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Example 2: Reduction of a Delay System
Eẋ(t) = A0x(t) + A1x(t − τ) + e u(t) with y(t) = eTx(t)

with

E = κ I + T,

A0 =
3
τ

(T− κ I) ,

A1 =
1
τ

(T− κ I)

T = diag

 1 1 · · · 1
1 0 0 1

1 1 · · · 1



Compare approaches:
Direct (generalized) interpolation:
Hr(s) = eTVr

(
sWT

r EVr −WT
r A0Vr + WT

r A1Vr e−sτ)−1 WT
r e.

Approximate delay term with rational function:

e−τs ≈ p`(−τs)
p`(τs)

Pass to (`+ 1)st order ODE system: D(s) x̂(s) = p`(τs) e û(s) with
D(s) = (sE− A0) p`(τs)− A1p`(−τs).
Model reduction on linearization: first order system of dimension
(`+ 1) ∗ n. (→Loss of structure!)
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Example 2: Reduction of a Delay System

Eẋ(t) = A1x(t) + A2x(t − τ) + e u(t) with y(t) = eTx(t)
Hr(s) - Generalized interpolation; Hr,1(s) - First-order Padé;

Hr,2(s) - Second-order Padé;

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

freq (rad/sec)

 |
 H

(j
w

) 
| 

Bode Plots of full−order and reduced−order models

 

 

H(s)
H

r
(s)

H
r,1

(s)

H
r,2

(s)

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
−20

10
−15

10
−10

10
−5

10
0

freq (rad/sec)

 |
 H

(j
w

) 
| 

Bode Plots of error models

 

 
H(s) − H

r
(s)

H(s) − H
r,1

(s)

H(s) − H
r,2

(s)

Original system dim: n = 500. Reduced system dim: r = 10.
Interpolation points: ±1.0E-3 ı̇ı, ±3.16E-1 ı̇ı, ±5.0 ı̇ı, 3.16E+1 ı̇ı, ±1.0E+3ı̇ı
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Parametrized Dynamical Systems

Systems often depend on parameters...
A designer/engineer/forecaster searches for optimal parameter
values: to reduce cost, to improve efficiency, to minimize
disturbance, predict trouble, etc.
This results in complex large-scale optimization problems.
Goal: Give the designer/engineer/forecaster a reduced parametric
model with the same knobs to turn and optimize !!!
Surrogate Optimization: Instead of solving

min
p
J (y; u, p) such that

E(p) ẋ(t) = A(p) x(t) + B(p) u(t), y(t) = C(p) x(t)

solve
min

p
J (yr; u, p) such that

Er(p) ẋr(t) = Ar(p) xr(t) + Br(p) u(t), yr(t) = Cr(p) xr(t)
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Parametrized Dynamical Systems

H(p, s) = C(p) (sI− A(p))−1B(p) with p = {p1, p1, . . . , ppar}.

Assume
A(p) = A0 + f1(p)A1 + . . .+ fM(p)AM

B(p) = B0 + g1(p)B1 + . . .+ gM(p)BM

C(p) = C0 + h1(p)C1 + . . .+ gM(p)CM

with M � n.
Want to preserve the parametric dependence in the reduced
model in a way the maintains effective reduction:
Hr(p, s) = Cr(p) (sI− Ar(p))−1Br(p) with

Ar(p) = WT
r A(p)Vr = WT

r A0Vr + f1(p)WT
r A1Vr + . . .+ fM(p)WT

r AMVr

Br(p) = WT
r B(p) = WT

r B0 + g1(p)WT
r B1 + . . .+ gM(p)WT

r BM

Cr(p) = C(p)Vr = C0Vr + h1(p)C1Vr + . . .+ hM(p)CMVr

The parametric structure of H(p, s) is retained in Hr(p, s).
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Example 3: Diffuse Optical Tomography

Tissue illuminated by near-infrared, frequency modulated light
Light detected in array(s)
Tumors have different optical properties than surrounding tissue
Recover images of optical properties ( diffusion and absorption
fields ) from data
Problem is ill-posed and underdetermined, and data is noisy
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Example 3: Diffuse Optical Tomography

DOT forward problem given by the 3D PDE [Arridge 1999]

1
ν

∂

∂t
η(x, t) = ∇ · D(x)∇η(x, t)− µ(x)η(x, t) + bj(x)uj(t), for x ∈ Ω

0 = η(x, t) + 2AD(x)
∂

∂ξ
η(x, t), for x ∈ ∂Ω±

yi(t) =

∫
∂Ω

ci(x)η(x, t) dx for i = 1, . . . , nd

Utilize observations, y(t), to determine D(x) and µ(x).

For simplicity, assume D(x) is well specified.

µ(x) = µ(·,p) for p = [p1, . . . , p`]T .

Given ns sources and nf frequency modulations:
a measurement for p: solution of ns · nf discretized 3D PDEs!
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Discretized Problem

E ẋ(t; p) = A(p) x(t; p) + B u(t) with y(t; p) = C x(t; p)

E, A(p) ∈ Rn×n, B ∈ Rn×ns , and C ∈ Rnd×n.

x ∈ Rn is the discretized photon flux, A(p) = A[0] + A[1](p)

y = [y1, . . . , ynd ]
T : vector of outputs.

Y(ω; p) = F(y(t; p)), U(ω) = F(u(t))

Y(ω; p) = H(ı̇ıω; p) U(ω) where H(s; p) = C (s E − A(p))−1 B;

H(s,p) : mapping from sources (inputs) to measurements
(outputs) in the frequency domain.
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Inverse Problem for Parameterized Tomography

Yi(ωj; p) ∈ Cnd : for input source Ui at frequency ωj

Y(p) = [Y1(ω1; p)T , . . . , Y1(ωnω ; p)T , Y2(ω1; p)T , . . . ,Yns (ωnω ; p)T ]T ∈ Cnd·ns·nω

The nonlinear least squares problem:

min
p∈R`
‖Y(p)− D‖2 s.t.

E ẋ(t; p) = A(p) x(t; p) + B u(t) with Y(p) = F (C x(t; p))

Parameterization by compactly supported radial basis functions
(CSRBF) [Aghassi, Kilmer, Miller 2011]

Solve using trust region method with regularized Gauss-Newton
search directions [deSturler,Kilmer 2011]

What are the objective function and Jacobian evaluations?
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Forward Problem: Function and Jacobian Evaluations

Y(p)− D eval. requires for i = 1, . . . , ns and j = 1, . . . , nw

H(ı̇ıωj; p) = C(ı̇ıωj E − A(p))−1 B,

Jacobian evaluation
∂

∂pk
Yi(ωj; p) requires

∂

∂pk
[H(ı̇ıωj; p)] = −C (ı̇ıωj E − A(p))

−1 ∂

∂pk
A(p) (ı̇ıωj E − A(p))

−1 B

for i = 1, . . . , nd and j = 1, . . . , nw

Use interpolatory model reduction to replace
H(ı̇ıωj; p) = C (ı̇ıωj E − A(p))

−1 B with
Hr(ı̇ıωj; p) = Cr(ı̇ıωj Er − Ar(p))

−1 Br

∂

∂pk
[H(ı̇ıωj; p)] with

∂

∂pk
[Hr(ı̇ıωj; p)]
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Parametric Model Order Reduction

Given
H(s, p) = C(p) (sE(p)− A(p))−1B(p)

Construct

Hr(p, s) = Cr(p) (sE(p)− Ar(p))−1Br(p)

via projection
Er(p) = WT

r E(p)Vr

Ar(p) = WT
r A(p)Vr

Br(p) = WT
r B(p)

Cr(p) = C(p)Vr

Beattie Preserving System Structure



Setting OrdvsDim GenProj pMOR InexactGenRed Concl Ex3 Interp DOT

Parameter interpolation

Theorem ([Baur/Beattie/Benner/G.,09])

Suppose σE(p)− A(p), B(p), and C(p) are continuously differentiable
with respect to p in a neighborhood of π ∈ R`, where σ ∈ C.

if [σE(π)− A(π)]−1 B(π) ∈ Range(Vr) and[
C(π) (σE(π)− A(π))−1

]T
∈ Range(Wr) then

H(σ,π) = Hr(σ,π),
∂

∂s
H(σ,π) =

∂

∂s
Hr(σ,π), and

∇pH(σ,π) = ∇pHr(σ,π)

Two-sided interpolatory projection automatically matches
parameter gradients.
[Daniel et al., 2004], [Gunupudi et al., 2004], [Weile et al., 1999], [Feng/Benner, 2009],....
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Interpolatory Parametric Model Reduction in DOT

Recall:
H(s,p) = C (sE− A(p))

−1 B
Hr(s,p) = Cr (sEr − Ar(p))

−1 Br

Choose frequency interpolation points σ1, σ2, . . . , σK ∈ C and the
parameter interpolation points π1,π2, . . . ,πJ ∈ R` to enforce

H(σk,πj) = Hr(σk,πj)

H′(σk,πj) = H′r(σk,πj)

∇pH(σk,πj) = ∇pHr(σk,πj)

for k = 1, . . . ,K and j = 1, . . . , J.

In DOT application: σk = ı̇ıωk.
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In DOT, function evaluations amount to evaluating of H(s,p) for
chosen σk = ı̇ıωk.

The Jacobian evaluations are ∇pH(s,p)

Perfect application for interpolatory model reduction.

Replace H(s,p) with Hr(s,p) and ∇pH(s,p) with ∇pHr(s,p)

Solving r × r linear systems as opposed to n× n

For the values of p that are sampled, the minimization algorithm
does not see the difference.

[Arian/Fahl/Sachs, 2002], [Fahl/Sachs, 2003], [Willcox et al., 2010], [Druskin et al., 2011],
[Meerbergen,Yue 2011], [Benner/Sachs/Volkwein, 2014],..
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Example 3a: n = 160801

5cm by 5cm uniformly spaced grid

Discretization leading to n = 160801 degrees of freedom.

There are 32 sources and detectors.

25 CSRBF leading to ` = 100 parameters.

Five sampling points πj ∈ R100

Use same noise level and initialization for the full-order parametric
model, n = 160801, and the surrogate parametric model, r = 250.
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Example 3a - cont
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Full inversion problem: 1120 linear systems of size
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Example 3b

Use the same basis from the previous reconstruction
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Inexact solves in interpolatory projections

The (exact) primitive interpolating bases are

Vr =
[
K(σ1)−1B(σ1)b1, K(σ2)−1B(σ2)b2, · · · , K(σr)

−1B(σr)br
]

WT
r =

 cT
1C(σ1)K(σ1)−1

...
cT

r C(σr)K(σr)
−1


Persistent need for more detail and accuracy in the modeling
stage makes n big: O(106) or more

K(σ) v = B(σ)b and K(σ)T w = C(σ)Tc cannot be solved
directly.

Inexact solves need to be used in constructing Vr and Wr

Inexact solves create new issues.

Reduced order models no longer interpolate H(s)
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Inexact solves in interpolatory projections

Let ṽj be an inexact solution for K(σj)v = B(σj)bj and
w̃j be an inexact solution for K(σj)

Tw = C(σj)
Tcj.

Inexact solutions are associated with residuals:

δbj = K(σj)ṽj −B(σj)bj δcj = K(σj)
Tw̃j − C(σj)

Tcj

Define resulting “inexact bases”

Ṽr = [ṽ1, ṽ2, . . . , ṽr] W̃r = [w̃1, w̃2, . . . , w̃r]

The “inexact” model, H̃r(s) = C̃r(s)K̃r(s)−1B̃r(s), is defined by

K̃r(s) = W̃T
r K(s)Ṽr, B̃r(s) = W̃T

r B(s), and C̃r(s) = C(s)Ṽr.
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Inexact solves with Petrov-Galerkin

No unified backward error if approximate solution of each system
K(σj)v = B(σj)bj and K(σj)

Tw = C(σj)
Tcj occurs independently.

Stronger conclusions possible if there is more structure.
Assume that the linear systems K(σj)v = B(σj)bj and
K(σj)

Tw = C(σj)
Tcj are solved approximately with a

Petrov-Galerkin process:
Let Pm and Qm be subspaces of Cn with P⊥m ∩Qm = {0}.
Let ṽj and w̃j be solutions of

ṽj ∈ Pm such that K(σj)v−B(σj)bj ∈ Q⊥m

and
w̃j ∈ Qm such that K(σj)

Tw− C(σj)
Tcj ∈ P⊥m
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Backward error with Petrov-Galerkin

Define residual matrices

Rb = [δb1, δb2, . . . δbr] Rc = [δc1, δc2, . . . δcr]

and backward error

E2r = Rb(W̃T
r Ṽr)

−1W̃T
r + Ṽr(W̃T

r Ṽr)
−1RT

c

then H̃r(s) interpolates a perturbed dynamical system,

H̃(s) = C(s)T(K(s) + E2r)
−1B(s) at s = σ1, . . . σr.

The computed H̃r(s) is an exact reduced order model of a
perturbed system H̃(s) obtained by projection using “inexact”
bases:

K̃r(s) = W̃T
r K(s)Ṽr = W̃T

r (K(s) + E2r)Ṽr
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Backward error with Petrov-Galerkin

Define residual matrices

Rb = [δb1, δb2, . . . δbr] Rc = [δc1, δc2, . . . δcr]

and backward error

E2r = Rb(W̃T
r Ṽr)

−1W̃T
r + Ṽr(W̃T

r Ṽr)
−1RT

c

then H̃r(s) interpolates a perturbed dynamical system,

H̃(s) = C(s)T(K(s) + E2r)
−1B(s) at s = σ1, . . . σr.
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r Ṽr)

−1W̃T
r + Ṽr(W̃T
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Conclusions

Useful distinction between model order and state space dimension.

Interpolatory methods allow for straightforward extension to general
system structures that reflect important underlying model features.

Optimal choices for interpolation points are no longer straightforward, but good
choices are usually easy to obtain (for nonparametric problems).

For parameterized problems, effective strategies for choosing interpolation points
rely on greedy selection (similar to best practices for RB methods).

Example from tomographic image reconstruction

As for standard interpolatory methods, the principal off-line cost is tied to
solving large (generally sparse) linear algebraic systems.

For truncated iterative methods are used, backward stability is guaranteed within a
Petrov-Galerkin framework.

Necessary step for well-grounded, rigorous termination criteria.
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Valentine’s Day is just around the corner !!

Great Gift Idea !!

Beattie Preserving System Structure
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